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2 .  Permanganate oxidation of the metabolite of 
MTX yields a simple pteridine with the properties 
of 2,4-diamino-7-hydroxy-6-pteridinecarboxylic acid. 

3. Heating of the latter compound in 2 N 
sodium hydroxide solution at 70" leads t o  slow 
hydrolysis of the 4-amino group. 

4. The nonpteridine moiety of the metabolite of 
MTX is identical with the nonpteridine moiety of 
MTX. 

5 .  Tlie structure 4-amino-4-deoxy-7-hydroxy- 
N1o-methylpteroylglutamic acid ( 7-hydroxy-MTX) 
is proposed for the MTX metabolite. 

REFERENCES 

(1) Johns, D. G., et al., Biochim. Biophys. Acta, 105, 
380(1965). 

(2) Redetzki, H. M.,  Redetzki, J. E., and Mias, A. L., 

( 3 )  Johns D G. ' e l  ai. i b i d .  15 555(1966). 
(4) Loo, +. L., and Adirnsot; R'. H. i b i d .  11 170(1962). 
(5) Loo, T. L., and Adamso;, R. $., J .  'Me;. Chem., 8 ,  

Riochem. Pharmacol. 15 425(1966). 

513(1!4fi5) - > - - - - , -  

(6) Albert, A., Quart. Rev., 6, 197(1952). 
(7) Rajagopalan, K. V., Fridovich, I . ,  and Handler, P., 

(8) Waddell, W. J., J .  Lab.  Clin. Med., 48, 311(1956). 
(9) Johns, D. G., et at., Life Sci., 3, 1383(1964). 

(10) Bertino, J. R.,  el al.. J .  Bid. Chem., 239, 479(1964). 
(11) Zakrzewski S. F. ibid. 238 1485(1963). 
(12) Werkheiser: W. C'., ib id: ,  238, 888(1961). 
(13) Blion, G. B. Hitchin@, G. H . ,  and Russell, P. B., 

(14) Fu, S.-C. J., Reiner, M., and Loo, T. L., J .  O y g .  Chem., 

J .  Biol. Chem., 237, 922(1962). 

J .  A m .  Chem. Soc., j2, 78(1950). 

30. 1278(1965). 
(15) Freireich, E. J., et al., Cancer Chemofheropy Rep& 50, 

(16) Freeman, M. V., J .  Phavmacol. Enptl. Thelap. ,  122, 

(17) Johns, D. G., et al.,  J .  Clin. Invest., 43, 621(1964). 
(18) Henderson, E. S., Adamson, K. H., and Oliverio, 

219(1966). 

154(1958). 

V. T., Cancer Res., 25, 1018(1965). 

Statistical Analysis of Log-Dose Response Bioassay 
Experiments with Unequal Dose Ratios for the 

Standard and Unknown Preparations 
By C. PHILIP COX 

Well-known statistical analyses are available for the analysis of log-dose response 
assays when successive doses are in the same ratio for both the standard and unknown 
preparations. It is, however, sometimes convenient and advantageous in practice to 
use unequal dose ratios. Appropriate analyses are offered for such cases, analyses 
which reduce to the usual ones when the ratios are equal. It is seen that the op- 
erational flexibility thus permitted is obtained in return for only slightly increased 
computation. Four and six-point assays are discussed in detail together with a 
numerical example of the former. An improved method for calculating confidence 

interval estimates in log-dose response assays is also given. 

TATISTICAL ANALYSES for log-dose response S parallel line assays in which the ratios of the 
successively higher doses are the same for both 
the standard and unknown preparations are well 
known. (For example, see Reference 1.) The 
case to be considered here is that in which the 
ratios of successive doses are constant within 
each preparation but the constant ratio differs 
from one preparation to the other. Such a re- 
laxation of the usual single constant ratio con- 
dition is occasionally desirable in practice (2) 
and, for example, may permit the linear response 
log-dose range of the standard preparation to be 
exploited in the presence of more uncertainty 
about the linear range for the unknown prepara- 
tion. 

It will be shown that such flexibility can be 
achieved with only small changes from the single 
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ratio analyses and, in fact, the latter can be re- 
garded as special cases of the more general anal- 
ysis proposed here. This analysis has some com- 
putational advantages over the alternative based 
on a single log-dose transformation which gives 
integral dose-metameter values for one prepara- 
tion but nonintegral values for the other. 

SPECIFICATION AND 
DOSE TRANSFORMATIONS 

I t  will be supposed that, in an ( h  + k)-point 
assay, the h and k doses (concentrations) of the  
standard and unknown preparations, respectively, 
are chosen so that, 

where Z S ~  and ZU., arc, respectively, the ith dose of 
the standard and the j th  dose of the unknown 
preparation. 

As usual, it will be assumed that the observed 
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responses are subject to residual variability coni- 
ponents which are normally and independently 
distributed about population responses and that 
these are linearly related to logarithms of the doses 
over, a t  least, the dose ranges used. Then, writing 

ds = log DS and du = log DU 
dose transformations are defined as, 

1 
d s  

xs = - log (zs/z.s*) 

and 

1 
du 

X [ i  = - log(zrr/zu1) 

where 8.~1 and zcl are the two lowest doses. 
because for the ith dose, from Eq. 1, 

Hence, 

~ s i  = Ds~si-1 = . . . = D;--'~si 

so that, 

1 
d s  

xsi = -- log (DIyzs,/zs1) = i - 1 

it is apparent that the integral xs values 0, 1, 
2, . . . , (h  - l), correspond to the zs values zgl, 
Z S ~ ,  . . . ZSh,  and similarly, for the unknown prep- 
aration, the second of Eq. 2 transforms the zu 
values into the integral XU values 0, I ,  2, . . ., k - 1. 

EQUIVALENT DILUTION CONDITION 
AND RELATIVE POTENCY FORMULA 

A dilution assay is one in which the unknown 
preparation acts simply as a dilution (concentra- 
tion) of the standard preparation in an inert diluent. 
In this case if ZES is a dose of the standard prepara- 
tion which is equipotent to, that is, produces the 
same response value as a dose ZEU of the unknown 
preparation, any two such equipotent doses are 
connected by the equivalent dilution relationship 

ZES = PpZEU (Eq. 3) 

where p p  is the relative potency. 
It is well known that, in the single dose-ratio case, 

this expression leads to a pair of parallel lines for 
the relationship between responses and log-dose 
values. The corresponding implication from the 
equivalent dilution condition based on the trans- 
formations in Eq. 2 is readily obtained as follows. 

Let X E S  and XEU denote equipotent log-dosc-values 
so that, from Eqs. 2 and 3, 

and it may be noted that, if d s  = du,  Eq. 4 reduces to 
XES - XEU = a constant, that is to the usual 
parallelism condition. 

The next step is to find the relations between the 
parameters of the two response lines when these 
are such that the condition in Eq. 4 obtains. These 
relations will further lead to the expression from 
which the relative potency may be estimated. 

For these suppose that population values q.s 
and qu of standard and unknown preparation re- 
sponses are linearly related to their corresponding 
x s  and xu values by the equations: 

01.s and au being the intercepts, while P.7 and PU 
are the slopes of the lines. Then, since qs = qu 
for equipotent doses, 

01,s + P.SrE.3 == CYU + PCIXEU 

and, multiplying both sidcs by ds,  

dsas -t Psdsxm = d s a u  + Budsxm 

Hence, substituting for dsxRs from Eq. 4 into the 
lefthand side, 

dsas + PslduxEu + Iog(ppz[~l/Zs1)1 
= dsau +ljudsxEu 

that is, 

ds(as  - au)  + PslOg(ppzui/~si) 
f (Padu - Puds)XEu = 0 

But, for this relation to hold for all X E ~  in the 
linear range, it must be an identity and hence, 

d d a s  - ao)  + Ss1Odppzui/ssi) = 0 (Eq. 6) 

and 

Bsdu - Pods = 0 0%. 7) 
The relation in Eq. 7 is the new statement of the 

equivalent dilution condition and which reduces 
to the parallelism condition, Ps = Pu, when ds  = 
du. For the relative potency itself it is first con 
venient to write the condition in Eq. 7 as: 

Then, from Eq. 6, 

log ( P ~ S L I I I Z S I )  = - (as  - au)/P (Eq. 9) 

so that the population value of the relative potency 
is given by 

and the related estimation procedure is next con- 
sidered. 

RELATIVE POTENCY ESTIMATE 

Writing Eq. 5 in the equivalent form, 

7s  = p,3 + PS(XS - ZS) = PS + PdS(xs - ZS) 

qu = pu + PO(XU - Zu) = PU + Bdo(xo - Zu) 

(as - ao) = ( P S  - PU) - P(dsEs - duZu) 

it follows that 

and hence, from Eq. 9, that 

(.us - YU) 

P ltrg (pPzui/~si) = dsjts - duEu - 

(Eq. 10) 

Conventional statistical methodology then leads 
to estimates of PS, pup and P as Fs, 9u, and b, re- 
spectively, where 
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in which quantities such as, 

Zs'xy = Zs(xs - X s ) ( y s  - 9s) = ZA(X,S - X S ) Y S  

can be calculated by the usual computation formula, 
suffixes S and U denoting summations over the 
standard and test preparation values, respectively. 

From Eq. 10 the relative potency estimate R is 
then given by 

Pursuance of the general case beyond this point 
is straightforward but likely to be of limited prac- 
tical appeal; more usefully the commonly occurring 
cases of four and six-point assays will now be 
examined in detail. 

FOUR-POINT LOG-DOSE RESPONSE ASSAY 

Suppose that a four-point assay is carried out in a 
completely randomized design and that n responses 
are observed at each of the four preparation-dose 
combinations. Let S1 and SZ be the response totals 
for the lower and higher doses of the standard 
preparation, U1 and UZ being the corresponding 
totals for the unknown preparation. Then, as in 
the usual case when ds = du, it  is convenient for the 
analysis of variance (ANOV) and the estimation of 
relative potency to obtain three orthogonal con- 
trasts between the four treatment totals. 

The difference between the means for the two 
preparations ( j is - 7 ~ )  is 

Vs - 9rr = - -  (SI + Sz - U1 - Uz) 
1 

2n 
= -LP/2n 

where 

L, = -s1 - sz + Ul + uz 
is the first of the contrasts required. 

The second contrast is one proportional to the 
regression coefficient b. In the four-point assay 
case the transformations in Eq. 2 lead to %-values 
of 0 and 1 for the upper and lower doses, respec- 
tively. Then: 

1 
Zs'xy = Zs(xs - Xs)ys = 2 (-S1 + SZ) 

and 

zs'xx = Zs(xs  - 2 ~ ) ~  = n/2 

and similarly for unknown preparation summations. 
Hence, from Eq. 11, 

so that 

L,  = -dsSi + dsSz - duUi + duUz (Eq. 16) 

will be taken as the second contrast. 
The third contrast is one for testing the relevance 

of the model, in particular, being sensitive to  de- 
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parture from the equivalent dilution condition as 
now expressed by Eq. 8. This contrast can there- 
fore be taken as proportional to the quantity 
(dub.q - d,ybu) where bs and bu are regression coeffi- 
cients for the standard and unknown preparations 
taken separately. With 

h s  = Zs'xy/Zs'xx = -(SI - &)/n  

6 0  = -( UI - U z ) / n  
and 

it follows that 
1 dubs - dsbu = - - n (dvS1 - duSz - dsUi + dsUz) 

The third contrast will accordingly be taken as 

Ld = duSi - duSz - dsUi + dsUz (Eq. 17) 

where the suffix d here denotes divergence from the 
condition in Eq. 8. 

The statistical analysis is based on the usual 
assumptions that the responses are independent and 
normally distributed with constant variance. 
Accordingly, because each contrast is a linear com- 
bination of independent observations, the appro- 
priate divisors can be found by conventional 
statistical procedures and it is also readily checked 
that the three contrasts are orthogonal. From 
Eqs. 14, 16, and 17 the complete scheme of contrasts 
together with the ANOV entries, may then be set 
out as in Table IA. 

Defining the correction term as 

C = (Sl + SZ + UI + Ud2/4n 

the ANOV is therefore as shown in Table IB. 
Model relevance may be tested by comparing the 

ratio of the mean squares for divergence and for 
within preparations and levels against the tabulated 
critical value, F, = F(1,4n - 4,0.05) say. Assuming 
satisfactory relevance, the point estimate of relative 
potency is next obtained. For this, values of (9s - 
gu) and b can be substituted, from Eqs. 13 and 15 

into Eq. 12, to give with 2s = 2u = - , 1 
2 

(Eq. 18) 

With the usual assumptions the only quantities 
subject to statistical variability are the contrasts 
L, and L,. Accordingly, an interval estimate of 
the relative potency can be obtained from an 
interval estimate for the population mean of 

M (ds2 + du2)Lp/Lr 0%. 19) 
The result due to Fieller (3, 4) for interval esti- 

mation of a ratio can be applied in this case using 
the method of Cox and Ruhl (5). The authors 
showed that YL and r H ,  the lower and upper limits, 
respectively, of the 95% confidence interval (for 
example) for the population mean of a ratio r = 

L,/L, can be expressed as 

where 
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TABLE IA-ORTHOGONAL CONTRASTS FOR AN UNEQUAL DOSE RATIO FOUR-POINT ASSAY (n  RESPONSES PER 
DOSE) 

._ 

Response Total --- 
Contrast S1 s 2 Ul U ,  ANOV Sum of Srl 

- ~ ~ - -  
Prepn.: L,  -1 -1 1 1 LP2/4n 
Regression: L, - ds d s -du du Lr2/2n(ds2 + d d )  
Divergence: Ld du - du -ds ds Ld2/2n(ds2 + d?) 

ANOV = LP2/uPs2 

TABLE IB-ANOV __ 
Variation Source d.f. S.S. m.s. 

% 0%. 21) 

Prepn. 
Regression 
Divergence 
Within prepn. 

and levels 
Total 

1 
1 
1 

4n - 4 

4n - 1 

Lp2/4n 
L,2/2n(ds2 + du2) 
Ld2/2n(dsz + du2) 
By subtraction s2 = s.s./4n - 4 

Z (response)2 - C 
all 

and substituting this in Eq. 20 gives 

1 X [rF, T 4'3 (F, + F, - F,) 
F P  

F 
[l =F 42 + (1 - ")] F, (Eq. 22) 

Applied in the present case the lower and upper 
limits, M L  and M H ,  with M as defined in Eq. 19 
are then, from Eq. 22, 

M 
M L ,  M H  = 

The final assay results may therefore be cited as: 

1 R = %! antilog 3 (ds - du + M )  (Eq. 24) 
W l  

where the 95% confidence interval is defined by 

Numerical Example-To illustrate the above 
method, responses from an assay (6) are used, 
unequal dose ratios being obtained by assuming 
that the upper dose of the unknown preparation 
was 0.9 mg. instead of 1 nig. as used in the actual 
experiment. The totals, each of 5 individual 
responses, and the doses taken for present pur- 
poses are shown in Table 11. 

Here then, 

so that, 
Ds = 4, Du = 3.6 

ds  = log 4 = 0.6021, du = 0.5563 

giving, 

ds - du = 0.0458, ds2 + du2 = 0.6720 

The contracts L,, L,, and Ld are then calculated 
in accordance with the scheme in Table IA as, 

L, = -350.1 - 213.9 + 335.8 + 240.7 = 12.5 

Lr = -ds(Si - 5'2) - du(Ui - Uz) 
= (-0.6021)(136.2) - (0.5563)(95.1) 
= - 134.9102 

L d  = du(S1 - &) - ds(U1 - Uz) 
= (0.5563)(136.2) - (0.6021)(95.1) = 18.5083 

With n = 5 the corresponding ANOV entries are 
then, 

Lp2/20 = 7.8125 

L,z/10(ds2 + du2) = (134.9102)'/6.72 = 2708.4467 

LaZ/6.72 = (18.5083)2/6.72 = 50.9758 

TABLE 11-DOSES AND RESPONSE TOTALS 

Std. Prepn., Unknown Prepn., 
mg. Tissue mcg./LH 

Dose 0.6 2.4 0.25 0 .9  
Response 

total 350.1 213.9 335.8 240.7 
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From the original ANOV, the total corrected 
sum of squares was 3692.1775 so that for the 
present case the ANOV (in which the ratios F, and 
F, are also indicated) is as shown in Table 111. 
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orthogonal contrasts together with their ANOV 
entries can then be defined as shown in Table IV,  
where ds = log DS and du = log Du. 

The first three contrasts are analogous to the 
three defined for the four-point assay while the 
contrasts Qs and QU are sensitive to quadratic 
curvature in the log-dose response lines for the 
standard and the unknown preparations, respec- 
tively. An alternative formulation for the latter 
two contrasts would be to replace them by contrasts 
for combined and opposed curvatures Qt and Qz 
say, where, 

Qi = Qs + Qu = Si - 2Sz + s3 + Ui - 2U2 + U3 

Qz = Qs - QU = Si - 2S2 + S3 - Ui +2Uz  - Us 
for which the ANOV entries would be Q12/12n 
and Qz2/12n, respectively. The formulation in 
Table IV, however, is slightly easier to compute 
and provides for the relevance tests required because 
appreciable curvature in either response line will 
render the present analysis inapplicable. The 
ANOV is then as shown in Table V. 

On the assumption that the relevance tests for 
divergence, curvature(S) and curvature( U )  are 
satisfactory, the relative potency estimate is now 
obtained by finding appropriate quantities to sub- 
stitute into Eq. 12. For the 6-point assay the 
transformations in Eq. 2 lead to x-values of 0, 1, 
and 2 for both preparations, so that Zs = ZU = 1 
and 

dS?S - duEu = d s  - d" 

Next 

1 
3n 9s - 9u = - (S, + sz 4 s 3  - Ul - uz - U3) 

= -L,/3n (Eq. 26) 

For the regression coefficient the quantities re- 
with L, as defined in Table IV. 

quired are 

Zs'xy = -s1 + osz + s, = -5-1 + sa 
ZS'XX = 2n 

and similarly for the unknown preparation. 
from Eq. 11 

Hence, 

ds(-S1 + S3) + d d -  4 + U3) 
2n(ds2 + du2) 

b =  

= L,/2n(dsZ + du2) 0%. 27) 

From Eqs. 26, 27, and 12 the relative potency esti- 
mate is then 

TABLE 111-ANOV 

Variation 
Source d.f. S.S. m s .  

Prepn. 1 7.8125 F p  = 0.1351 
Regression 1 2708.4467 F, = 46.8517 
Divergence 1 50.9758 
Residual 16 924.9425 57.8089 

Total 19 3692.1775 
- 

Since the mean square for divergence is less than 
the residual mean square relevance may be con- 
sidered satisfactory. Proceeding to the estimation 
of relative potency, from Eq. 19, 

M = (ds2 + du2)Lp/L, 
= (0.6720)(12.5)/-134,9102 
= -0.0623 

so that, from Eq. 24, 

0.6 1 
0.25 2 

= 2.36 mcg./mg. 

R = antilog - (0.0458 - 0.0623) 

For the interval estimate F,, from statistical 
tables, is F, = F(1, 16, 0.05) = 4.49 or, if desired, 
F, can be obtained from the t-table for 16 degrees 
of freedom as 

F, = t2(16, 0.05) = 2.122 = 4.49 

Then, with F p  and F, from the ANOV, 

_ - _ _ _  Fc - 4'49 = 33.2346 
Fp 0.1351 

so that, from Eq. 23, 

X [ 1 f d0.0958 + (33.2346)(0.9042) ] 
= -0.4472, 0.3094 

and, finally, from Eq. 25, 

RL, RH = 2.4 antilog 1 

1 

(0.0458 - 0.4472), 

2.4 antilog 2 (0.0458 + 0.3094) 

= 1.51, 3.61 mcg./mg. 

SIX-POINT LOG-DOSE RESPONSE ASSAY 

Suppose that a six-point assay is carried out 
using a completely randomized design and that n 
responses are observed at each of doses ZSI, Dszsl, 
Ds2z.71 for the standard preparation and at doses 
z,,, . Dmr~,. DUzzul for the unknown preparation. 

= 3' antilog [ds  - do + MI 0%. 28) zu1 

where 

2 1 M = 3 (as2 + dua) (Eq. 29) L ,  

For the interval estimate M L  and M H  are calcu- 
lated, using the now appropriate values, from Ea. 

Let the respective response totals be denoted in 
the usual way as S1, SZ, St, and U I ,  uz, u3. Five V a l  estimate is defined by 

23 so that, for the relative potency itself the inter- 
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TABLE ~\'-ORTHOGONAL CONTRASTS FOR AN UNEQUAL DOSE RATIO SIX-POINT ASSAY 
(n  RESPONSES PER DOSE) 

- Response Total-- 
Contrast SI 5 2  Sa Ul U ?  U1 ANOV Sum of Sq. 

-1 -1 -1 1 1 1 Lp2/6n 
LP du L,2/2n(ds2 + du2)  0 

Prepn.: 
Regression: L, - ds 0 ds - du 

- ds 0 ds Ld2/2n(ds2 + du2) Divergence: Ld do 0 - du 
1 -2 1 0 0 0 Qs2/6n 

Curvature ( U ) :  Qu 0 0 0 1 -2 1 Qrr2/6n 
Curvature ( S ) :  Qs 

zs1 
zu1 

RL, RH = - antilog [ds - du + M L ] ,  

CONCLUSION 
For a given assay response it has been estab- 

lished in bioassay literature that two highly im- 
portant requirements for the precision of relative 
potency estimations are: (a)  the range, from the 
lowest to the highest dose investigated, should be 
as large as possible subject to linearity of the re- 
lationship between the response and the log-dose 
and to the requirement that responses should be 
normally distributed with constant variance and 
( 6 )  the difference between the mean response of 
the standard and unknown preparations should be 
as small as possible. 

TABLE V-ANOV 

Variation 
Source d.f. S.S. m s .  

Prepn. 1 LP2/6n 
Regression 1 L,2/2n(ds2 + du2) 
DiGergence 1 La2/2n(ds2 + du2) 
Curvature ( S )  1 Qs2/6n 
Curvature ( U )  1 Qu2/6n 
Residual 6n - 6 By subtraction s.s./6n-6 

Total 6n - 1 

In planning an assay, therefore, a basic problem 
is just that of using what is known about the un- 
known preparation to best meet these requirements. 
And in early stages, following perhaps some pilot 
investigations of log-dose response relationships, 
it may not be desirable to use equal spacing of log- 
doses for either the standard or the unknown prep- 
arations. The analyses of such general assays can 
be carried through quite straightforwardly using 
the actual log-doses instead of being based on log- 
dose transformations giving integral values for at 
least one of the two sets of log-doses. The ad- 
vantages of such transformations are primarily 
computational so that such transformations are 
commonly used in relatively well-established 
assays. In this context the present proposals may 
be regarded as providing a convenient procedure for 
intermediate cases. It gives simple computations 
and allows greater flexibility in the choice of doses 
than is permitted by the completely canonical 
form which requires the same dose ratio to be used 
for both preparations. 
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